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Abstract

High order finite difference approximations are derived for the second order wave equation with discontinuous coef-
ficients, on rectangular geometries. The discontinuity is treated by splitting the domain at the discontinuities in a multi
block fashion. Each sub-domain is discretized with compact second derivative summation by parts operators and the
blocks are patched together to a global domain using the projection method. This guarantees a conservative, strictly
stable and high order accurate scheme. The analysis is verified by numerical simulations in one and two spatial
dimensions.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

For wave propagating problems, the computational domain is often large compared to the wavelengths,
which means that waves have to travel long distances during long times. As a result, high order accurate
time marching methods, as well as high order spatially accurate schemes (at least third order) are required.
Such schemes, although they might be G-K-S stable [11] (convergence to the true solution as Dx! 0),
0021-9991/$ - see front matter � 2006 Elsevier Inc. All rights reserved.
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may exhibit a non-physical growth in time [3], for realistic mesh sizes. It is therefore important to devise
schemes that do not allow a growth in time that is not called for by the differential equation. Such
schemes are called strictly (or time) stable.

In many applications, like general relativity [29], seismology and acoustics, the underlying equations are
systems of second order hyperbolic partial differential equations. However (as pointed out in [15]), with very
few exceptions, the equations are rewritten and solved on first order form. There are three obvious drawbacks
with this approach, namely (i) we double the number of unknowns, (ii) we might introduce spurious
oscillations (due to unresolved features), and (iii) we need twice as many grid points (both in time and in each
of the spatial dimensions) to obtain the same accuracy. The reasons for solving the equations on first order
form are probably due to the fact that computational methods for first order hyperbolic systems are very well
developed, and they are naturally more suited for complex geometries.

For acoustic and electromagnetic wave propagation, staggered grid discretizations are very popular [6,31]
since that avoids (ii) and (iii) above. Note however (again see [15]) that staggering in both time and space is
more or less equivalent to solving the system of equations on second order form. One major disadvantage is
that staggered grids do not have the summation by parts (SBP) property and that can lead to complications at
boundaries and internal interfaces, especially for high order discretizations. To retain high order accuracy for
problems with discontinuities in the coefficients is another concern [12,13,7].

The methods discussed above all solve the equations on first order form. Difference approximations have
previously been derived [15,16,25,1,5] for the second order wave equation, without first writing it as a first
order system. For problems with discontinuous coefficients at most second order accuracy have been recov-
ered [1,5,13].

The second derivative terms have received little attention, especially concerning the stability issues for high
order approximations [2]. Finite difference operators approximating second derivatives and satisfying a sum-
mation by parts rule, have previously been derived [20] for the 4th, 6th and 8th order case, with the emphasis
on strictly stable formulations to mixed hyperbolic–parabolic problems.

One major advantage of using SBP operators [17,18,27] to discretize the equations on a multi block domain
is that we can mimic the boundary and interface terms from the underlying continuous problem. Given the
continuous boundary and interface conditions (i.e., the physics) in combination with the simultaneous approx-
imation term (SAT) method [3,4,21,22] or the projection method [23,24] we can obtain completely analogous
conservation and stability properties as for the underlying partial differential equation (PDE). This should
attract physicists to employ this technique for a range of applications. In general relativity for example, the
SBP operators combined with the SAT technique have now been successfully implemented [8,19] for system
of equations on first order form (in time).

In this paper we will show how a certain class of the recently developed compact and high order accurate
second derivative SBP operators [20] can be combined with the projection method for implementing general
boundary and interface conditions. On piecewise rectangular domains we show that this technique leads to
strictly stable and high order accurate schemes for the wave equation on second order form and discontinuous
media. We will also show that the projection method requires special treatment at corners and block interfaces
in two dimensions.

We focus on geometrically relative simple problems with piecewise constant coefficients and aim for high
accuracy. Typical applications where this technique is appropriate include long range underwater acoustics
(layers of air, water and soil), various seismological problems (layers of rock, water and possibly oil) as
well as electromagnetic problems (wave guides and printed circuit boards). Complex geometries, varying
coefficients and also the problem with absorbing boundary conditions [30,14] will not be addressed in this
paper.

In Section 2 we introduce some definitions and discuss the SBP property for the second derivative. In Sec-
tion 3 we consider the second order wave equation in one dimension (1-D) and show how the projection
method and the SBP operators can be combined to obtain strictly stable schemes for problems with discon-
tinuous coefficients. In Section 4 we consider the two-dimensional (2-D) problem. In Section 5 we describe a
compact and explicit high order accurate time marching method that involves only two time levels. In Section
6, computations are done and in 7 conclusions are drawn. The SBP operators used in the computations are
presented in Appendix II.
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2. Definitions

To describe the SBP property in detail, some definitions are needed. The matrices and vectors
ð1Þ
will frequently be used in subsequent sections. We also need the notation
C � D ¼

c0;0D � � � c0;q�1D

..

. ..
.

cp�1;0D � � � cp�1;q�1D

2664
3775;
where C is a p · q matrix and D a m · n matrix. The p · q block matrix C � D is called a Kronecker product.
There are some useful rules for Kronecker products. In this paper we will use
ðA� BÞðC � DÞ ¼ ðACÞ � ðBDÞ;
ðA� BÞT ¼ AT � BT:

ð2Þ
2.1. 1-D domains

Let the inner product for real valued functions u,v 2 L2[a,b] be defined by ðu; vÞ ¼
R b

a uTvdx, and let the cor-
responding norm be iui2 = (u,u). We also introduce a weighted norm
kuk2
x ¼

Z b

a
uTuxðxÞdx;
where x(x) 2 L2[a,b] is a positive function. The domain (a 6 x 6 b) is discretized using N + 1 equidistant grid
points,
xi ¼ aþ ih; i ¼ 0; 1; . . . ;N ; h ¼ b� a
N

:

The numerical approximation at grid point xj is denoted vj, and the discrete solution vector is
vT = [v0,v1, . . . ,vN]. We define an inner product for discrete real valued vector-functions u,v 2 RN+1 by
(u,v)H = uTHv, where H = HT > 0, with a corresponding norm kvk2

H ¼ vTHv.

2.2. 2-D domains

Consider the domain (a 6 x 6 b, c 6 y 6 d) with an N + 1 · M + 1-points equidistant grid. That is,
xi ¼ aþ ihx; i ¼ 0; 1; . . . ;N ; hx ¼
b� a

N
;

yj ¼ cþ jhy ; j ¼ 0; 1; . . . ;M ; hy ¼
c� d

M
:

The numerical approximation at grid point (xi,yj) is denoted vi,j. We define a discrete solution vector vT =
[v0,v1, . . . ,vN], where vk = [vk,0,vk,1, . . . ,vk,M] is the solution vector at xk along the y-direction, as illustrated
in Fig. 1.
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Fig. 1. Domain 2-D.
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Let the inner product for real valued functions u,v 2 L2[x 2 [a,b], y 2 [c,d]] be defined by
ðu; vÞ ¼

R d
c

R b
a uTvdxdy, and let the corresponding norm be iui2 = (u,u). We also introduce a weighted norm
kuk2
x ¼

Z d

c

Z b

a
uTuxðx; yÞdxdy;
where x(x,y) 2 L2[x 2 [a,b], y 2 [c,d]] is a positive function.
We define an inner product for discrete real valued vector-functions u,v 2 RN+1·M+1 by (u,v)H = uTHv,

where H = (Hx � IM)(IN � Hy) = HT > 0, with a corresponding norm kvk2
H ¼ vTHv. Here Hx and Hy

denote the one-dimensional norms in the x- and y-direction, respectively. In order to distinguish (when
necessary) if a difference operator P is working in the x or the y-directions we will use the notations
Px and Py.
2.3. SBP property

An SBP operator mimic the behavior of the corresponding continuous operator with respect to the inner
product mentioned above. High order accurate SBP operators for the first derivative has previously been
developed [17,18] and refined [26]. To construct highly accurate and stable approximations of mixed hyper-
bolic–parabolic problems, high order accurate SBP operators for the second derivative were derived in [20],
see also [4]. Before we discuss the SBP property for the second order wave equation it is instructive to first
introduce the less restrictive SBP definition for parabolic problems. Consider the heat equation ut = uxx. Inte-
gration by parts (IBP) leads to
d

dt
kuk2 ¼ ðu; uxxÞ þ ðuxx; uÞ ¼ 2uuxjba � 2kuxk2

: ð3Þ
The construction (see [20]) of SBP operators D2, approximating o2/ox2 were based on Eq. (3). To fully mimic
the IBP property, we need D2 ¼ H�1ð�DT

1 HD1 þ BSÞ, where D1 is a consistent approximation of o/ox, S

includes an approximation of the first derivative operator at the boundary, and B = diag(�1,0, . . . , 0,1). By
multiplying the semi-discrete approximation vt = D2v by vTH and by adding the transpose, we obtain
d

dt
kvk2

H ¼ ðv;D2vÞH þ ðD2v; vÞH ¼ 2vN ðSvÞN � 2v0ðSvÞ0 � 2kD1vk2
H : ð4Þ
Formula (4) is a discrete analog to the IBP formula (3) in the continuous case.
However, it is not necessary to fully mimic the IBP property to obtain an energy estimate for a parabolic

problem. Consider the difference operator H�1(�A + BS), approximating o2/ox2. The energy method leads to
d

dt
kvk2

H ¼ 2vN ðSvÞN � 2v0ðSvÞ0 � vTðAþ ATÞv: ð5Þ
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To obtain an energy estimate it suffices that A + AT P 0, assuming that the boundary terms are correctly
implemented.

In [20] we introduced the following definition.

Definition 2.1. A difference operator D2 = H�1(�A + BS) approximating o2/ox2 is said to be a second
derivative SBP operator if A + AT P 0, if S includes an approximation of the first derivative operator at the
boundary and B = diag(�1,0, . . . , 0,1).

However, as we will show in the following section, hyperbolic second order systems introduce an extra sta-
bility requirement (see Lemma 3.1 and Definition 3.2) on the SBP operator.
3. The projection method in 1-D

In this method developed by Olsson [23], the boundary conditions are introduced via an orthogonal pro-
jection. When the energy method is applied, the projection operator P interacts with the SBP operator to gen-
erate boundary terms that are completely analogous to those of the continuous problem. In this section we
consider the one-dimensional problem. We will also discuss the extra stability requirement for the SBP oper-
ator, when applied to the wave equation on second order form.

3.1. Single domain

An energy estimate for the wave equation on second order form utt = uxx + F(x, t), x 2 [0, 1] requires initial
conditions u(x, 0) = f1(x), ut(x, 0) = f2(x) and appropriate boundary conditions
Llu ¼ auð0; tÞ þ uxð0; tÞ ¼ glðtÞ; Lru ¼ buð1; tÞ þ uxð1; tÞ ¼ grðtÞ: ð6Þ
Remark. Other type of boundary conditions, like Dirichlet and radiation boundary conditions (see for
example [30,14]) can also be used. However, the main focus in this paper is on the interface treatment.

Assuming zero boundary data and forcing function F, the energy method leads to
d

dt
ðkutk2 þ kuxk2 þ bu2ð1; tÞ � au2ð0; tÞÞ ¼ 0: ð7Þ
The problem have an energy estimate if
a 6 0; b P 0: ð8Þ
The discrete boundary conditions corresponding to (6) can be written
LT
l v ¼ ðaIlN þ IlN SÞv ¼ gl; LT

r v ¼ ðbIrN þ IrN SÞv ¼ gr; ð9Þ
where v is the discrete solution vector, S is the boundary derivative operator in Definition 2.1, IlN and IrN are
defined in (1). The boundary conditions can be combined to LTv = g(t), where g(t) = [gl(t)gr(t)]

T and
L = [Ll,Lr].

The projection method for the wave equation on second order form with the boundary conditions (6), can
formally be written
vtt ¼ PD2vþ ðI � P ÞĝttðtÞ þ PF ;

vð0Þ ¼ f1; vtð0Þ ¼ f2;
ð10Þ
where ĝ(t) = [gl(t),0, . . . , 0,gr(t)]
T, I the identity matrix and P the projection operator, given by
P ¼ I � H�1LðLTH�1LÞ�1LT: ð11Þ
In [24], it is proved that the following holds for the projection P,



254 K. Mattsson, J. Nordström / Journal of Computational Physics 220 (2006) 249–269
ðiÞ ðI � PÞðvðtÞ � ĝðtÞÞ ¼ ðI � P Þðf1 � ĝð0ÞÞ;
ðiiÞ P 2 ¼ P ;

ðiiiÞ v ¼ Pvþ ðI � P ÞĝðtÞ () LTv ¼ gðtÞ;
ðivÞ HP ¼ P TH :

ð12Þ
The first property in (12) means that the solution to (10) will satisfy the BC only if the boundary data and the
initial data are consistent.

When we solve (10) numerically we have to compute the second derivative of ĝ(t), if we have time depen-
dent boundary data. To avoid this we make the substitution w = v � (I � P)ĝ(t) and get the following system
of ordinary differential equations (ODE) for w
wtt ¼ PD2w� PD2ðI � PÞĝðtÞ þ PF ;

wð0Þ ¼ f1 � ðI � P Þĝð0Þ; wtð0Þ ¼ f2 � ðI � P Þĝtð0Þ:
ð13Þ
Thus to solve for v numerically we solve (13) for w and then compute v = w + (I � P)ĝ(t). In the numerical
examples through out this paper we will consider homogeneous boundary data and forcing function. Strict
stability for non-homogeneous boundary conditions are obtained in a straight forward manner, as shown
in [24].

Lemma 3.1. The problem (10) with ĝ = 0 and F = 0 have a non-growing solution if D2 is an SBP operator with

A = AT, and (8) holds.

Proof. If F, ĝ = 0 and if D2 is an SBP operator, the energy method applied to (10) leads to
vT
t Hvtt þ vT

tt Hvt ¼ �ðPvtÞTAðvÞ � ðvÞTATðPvtÞ � 2ðPvtÞ0ðSvÞ0 þ 2ðPvtÞN ðSvÞN
¼ �ðvtÞTAðvÞ � ðvÞTATðvtÞ þ 2aðvtÞ0v0 � 2bðvtÞN vN :
In the first step we use the fourth property in (12) together with the SBP property (see Definition 2.1) and in
the last step we use (9) together with the third property. If A is symmetric, we obtain
d

dt
ðkvtk2

H þ vTAvþ bv2
N � av2

0Þ ¼ 0:
This is completely analogous to (7). If (8) holds we have a non-growing energy. h

Due to Lemma 3.1 we introduce yet another definition (compare with Definition 2.1).

Definition 3.2. A difference operator H�1(�A + BS) approximating o2/ox2 is said to be a symmetric second
derivative SBP operator if it is an SBP operator and if A = AT.

In [20] we constructed compact and symmetric second derivative SBP operators of order 4, 6 and 8. The
second and sixth order accurate operators (presented in Appendix II) have been used for the computations
in Section 6.

3.2. Media interface

We start by deriving the interface conditions for the continuous problem. Consider the wave equation
a�1wtt ¼ ðbwxÞx; x 2 ½�1; 1�; t P 0;
where a,b > 0 are discontinuous at x = 0 and c ¼
ffiffiffiffiffi
ab
p

is the wave propagation speed. Integration by parts
leads to
Z 1

�1

a�1wttwt dx ¼ lim
�!0

Z ��

�1

ðbwxÞxwt dx�
Z �

1

ðbwxÞxwt dx
� �

¼ lim
�!0

bwxwtj1�1 � bwxwtj��� �
Z ��

�1

bwxwxt dxþ
Z �

1

bwxwxt dx
� �

:
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To obtain an energy estimate require that w and b wx are continuous across the interface, i.e.,
lim�!0ðbwxwtj���Þ ¼ 0, leading to d

dt ðkwtk2
a�1 þ kwxk2

bÞ ¼ bwxwtj1�1. From now on we assume that a and b are
piecewise constant, leading to the following system:
a�1
1 utt ¼ b1uxx; �1 6 x 6 0;

a�1
2 vtt ¼ b2vxx; 0 6 x 6 1;

ð14Þ
where a1 6¼ a2, b1 6¼ b2. Continuity at the interface (x = 0) means that
u ¼ v; b1ux ¼ b2vx: ð15Þ

If we use the interface conditions (15) and apply homogeneous Neumann conditions (ux = 0) at the outer
boundaries the energy method leads to
d

dt
E ¼ 0; ð16Þ
where the energy is defined as
E ¼ a�1
1 kutk2 þ a�1

2 kvtk2 þ b1kuxk2 þ b2kvxk2
: ð17Þ
We will treat the semi-discrete problem in such a way that we exactly mimic (16).
The projection method for the problem (14) and (15) can formally be written
PA�1wtt ¼ PDw; ð18Þ

where D ¼ diagðb1DðlÞ2 ; b2DðrÞ2 Þ, w = [u,v]T and A�1 ¼ diagða�1

1 INl ; a
�1
2 INrÞ. Here u and v are the solution vectors

corresponding to the left and right domain, respectively. The left and right domain is discretized using (Nl + 1)
and (Nr + 1) grid points. The left and right boundary points of u and v will be denoted w(LW,LI) and w(RI,RE),
respectively (see Fig. 2).

Remark. We can have different discretizations in the left and right domains. The only requirement for the
stability analysis to hold is that we use symmetric SBP operators (see Definition 3.2) in each of the domains.

The projection operator is given by (11), where H = diag(H(l),H(r)) and the boundary operator have three
parts
L ¼ ½LblLbrLI �; ð19Þ

where Lbl, Lbr are the left and right boundary operators and LI the interface operator approximating (15). To
help define the total boundary operator (making use of (1)) we introduce
LT
l ¼ ½IlNl S

ðlÞ�; LT
r ¼ ½IrNr S

ðrÞ�; ð20Þ

corresponding to the left and right boundary and
u v

Interface
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Fig. 2. Domain 2-D media discontinuity.
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LT
Il ¼ ½b1IrNl S

ðlÞ; IrNl �; LT
Ir ¼ ½b2IlNr S

ðrÞ; IlNr �; ð21Þ

corresponding to the left and right interface. Here the semicolon ; means row separation in a matrix (MAT-
LAB notation, for those familiar with that). For example, LT

l u ¼ ðSðlÞuÞ0 � ðuxÞ0, i.e., a difference approxima-
tion of the left boundary derivative. The boundary and interface operators are given by
LT
bl ¼ ½LT

l LT
0 �; LT

br ¼ ½LT
0 LT

r �; LT
I ¼ ½LT

Il � LT
Ir�; ð22Þ
where LT
0 is a zero vector of appropriate dimension.

If we multiply (18) by wT
t H we obtain
wT
t HPA�1wtt � wT

t HPDw ¼ wT
t HA�1wtt � wT

t HDw ¼ 0
by using the third and fourth properties in (11). By adding the transpose we obtain an energy estimate (not
shown here) completely analogous to (16), assuming that DðlrÞ

2 are symmetric SBP operators (see Definition
3.2) based on diagonal norms (which is true for the operators used in this paper, see Appendix II). How-
ever, to obtain a well-defined left hand side for the ODE system (18) requires that PA�1wtt =
A�1Pwtt(=A�1wtt), since P is singular. Hence, in order to solve (18), it is necessary that the following con-
dition holds:
PA�1 ¼ A�1P : ð23Þ

For a general P this expresses a compatibility condition between the analytic interface conditions (15) and the
coefficient a�1. For the problem (14) and (15), P is given by (11) and (19). Condition (23) certainly holds if a�1

is constant in a neighborhood of x = 0, such that diag(A�1) is constant at the r + 1 number of grid-points used
by the boundary derivative operators S(l,r) (see Appendix II). In this paper (23) does not hold since a�1 is dis-
continuous at the interface.

Remark. A strictly stable overall discretization (considering both time and space discretization) requires (23)
to hold. By computing the eigenvalues to the semi-discrete approximation (18) under the false assumption
that (23) holds, we found that we do obtain strictly stable approximations for the 2nd and 6th order
discretizations even with a variable a�1, discontinuous at the interface. However, we also found examples
where the corresponding 8th order approximation leads to an unstable approximation using (18) and a
discontinuous a�1.

To avoid the compatibility condition (23) we will transform the original continuous problem (14), (15) and
derive an estimate for the transformed problem that will lead to a discrete energy estimate. We then transform
back to the original problem. Consider the continuous problem:
~utt ¼ c2
1~uxx; �1 6 x 6 0;

~vtt ¼ c2
2~vxx; 0 6 x 6 1;

ð24Þ
where we introduce the notation ck = akbk, k = 1,2. We introduce a modified energy (compare with (17))
eE ¼ k~utk2 þ k~vtk2 þ c2
1k~uxk2 þ c2

2k~vxk2
: ð25Þ
The energy method on (24) leads to
d

dt
eE ¼ c2

1~ux~utj0�1 � c2
2~vx~vtj01:
The following condition: c2
1~ux~ut ¼ c2

2~vx~vt at x = 0, is required to obtain an energy estimate. We consider (15),
i.e., ~u ¼ ~v and b1~ux ¼ b2~vx to be the correct interface conditions (considering the physics). However, applying
(15) for the energy (25) does not lead to a energy estimate (since the right hand side is indefinite).

By introducing the scaling (and assuming piecewise constant coefficients)
u ¼ ffiffiffiffiffi
a1

p
~u; v ¼ ffiffiffiffiffi

a2

p
~v ð26Þ
into the original problem (14) and (15), we obtain (24) and the modified interface conditions
ffiffiffiffiffi
a1

p
~u ¼ ffiffiffiffiffi

a2

p
~v; b1

ffiffiffiffiffi
a1

p
~ux ¼ b2

ffiffiffiffiffi
a2

p
~vx: ð27Þ
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With homogeneous Neumann boundary conditions, the modified continuous problem (24) and (27) leads to
the energy estimate
d

dt
eE ¼ 0: ð28Þ
The estimate (28) is completely analogous to (16), i.e., the modified energy (25) transforms to (17). This can be
seen by using (26) to transform back to the original set of variables. The projection method applied to the
modified problem (24) and (27) leads to
~wtt ¼ eP eD ~w; ð29Þ
where eD ¼ diagðc2
1DðlÞ2 ; c

2
2DðrÞ2 Þ and ~w ¼ ½~u;~v�T. The modified projection operator eP is given by (11) and (19)

where now (instead of (21))
LT
Il ¼ ½b1

ffiffiffiffiffi
a1

p
IrNl S

ðlÞ;
ffiffiffiffiffi
a1

p
IIrNl �; LT

Ir ¼ ½b2

ffiffiffiffiffi
a2

p
IIlNr S

ðrÞ;
ffiffiffiffiffi
a2

p
IIlNr �: ð30Þ
We introduce a discrete analog to (17), given by
EH ¼ a�1
1 kutkH ðlÞ þ a�1

2 kvtkH ðrÞ þ b1uTAðlÞuþ b2vTAðrÞv: ð31Þ
Lemma 3.3. If Dðl;rÞ2 are symmetric second derivative SBP operators, (29) is a strictly stable approximation to

(14).

Proof. The energy method on (29) leads to
~wT
t H ~wtt þ ~wT

tt H ~wt þ ðeP ~wtÞTAð~wÞ þ ð~wÞATðeP ~wtÞ
¼ 2ðeP ~wtÞðBS ~wÞ ¼ �2c2

1ðeP ~wtÞðLWÞðS ~wÞðLWÞ þ 2c2
1ðeP ~wtÞðLIÞðS ~wÞðLIÞ

� 2c2
2ðeP ~wtÞðRIÞðS ~wÞðRIÞ þ 2c2

2ðeP ~wtÞðREÞðS ~wÞðREÞ ¼ 0;
where H ¼ diagðH ðlÞ;H ðrÞÞ, A ¼ diagðc2
1AðlÞ; c2

2AðrÞÞ, B ¼ diagðBðlÞ;BðrÞÞ and S ¼ diagðc2
1SðlÞ; c2

2SðrÞÞ. The left and
right boundary points of ~u and ~v are denoted by ~wðLW;LIÞ and ~wðRI;REÞ, respectively (see Fig. 2). In the first step
we use the fourth property in (12) and in the second step we use the SBP property (see Definition 2.1). In the
last step we utilize the fact that we apply (through the projection) homogenous Neumann BC and the interface
conditions (27) via the third property in (12), i.e., c2

1ðeP ~wtÞðLIÞðS ~wÞðLIÞ ¼ c2
2ðeP ~wtÞðRIÞðS ~wÞðRIÞ, ðeP ~wtÞðREÞðS ~wÞðREÞ ¼

0 and ðeP ~wtÞðLWÞðS ~wÞðLWÞ ¼ 0.
If A(l,r) are symmetric we obtain the following energy estimate:
d

dt
EH ¼ 0;
by utilizing (26) to go back to the original set of variables. The energy is defined in (31). This estimate is com-
pletely analogous to (16), which means that (29) is a strictly stable approximation. h

Remark. We have not found a way around the compatibility condition (23), except for the case of piecewise
constant coefficients. One way around the restriction to piecewise constant coefficients, i.e., condition (23), is
to utilize the SAT method at the interface. This will be pursued in a coming paper.
4. The projection method in 2-D

We extend the analysis to two-dimensional, rectangular domains and show that the projection method
requires special treatment at corners.
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4.1. Single domain

Consider the two-dimensional wave equation
a�1utt ¼ b uxx þ uyy

� �
; �1 6 x 6 1; 0 6 y 6 1;

ux ¼ 0; x ¼ �1; 1; 0 6 y 6 1;

uy ¼ 0; �1 6 x 6 1; y ¼ 0; 1:

ð32Þ
To simplify notation in this section we set a = b = 1. The energy method leads to
d

dt
ðkutk2 þ kuxk2 þ kuyk2Þ ¼ 0: ð33Þ
A semi-discrete approximation to (32) using the Projection method can formally be written
vtt ¼ P ððD2Þx � IM þ IN � ðD2ÞyÞv; ð34Þ
where we have simplified the notation by using the Kronecker product introduced in Section 2. The projection
operator is given by (11) where the norm is defined as H = (Hx � IM)(IN � Hy) and I = IN � IM. The presence
of corners introduce a complication, when Neumann boundary conditions are used. Consider the boundary
operator
eL ¼ ½ LW LN LE LS � 2 RðNþ1Þ�ðMþ1Þ�2ðNþMþ2Þ ð35Þ
with contributions from the four sides (west, north, east and south), where LT
W ¼ LT

l � IM , LT
N ¼ IN � LT

r ,
LT

E ¼ LT
r � IM , LT

S ¼ IN � LT
l , and LT

l;r are defined in (20). By using the notation from Section 2 (see also
Fig. 1) the boundary operators at the four sides are defined through
LT
S v ¼ ðSvÞS ¼ ðSvÞi;0 ¼ 0; i ¼ 0; . . . ;N ;

LT
Wv ¼ ðSvÞW ¼ ðSvÞ0;j ¼ 0; j ¼ 0; . . . ;M ;

LT
Nv ¼ ðSvÞN ¼ ðSvÞi;M ¼ 0; i ¼ 0; . . . ;N ;

LT
Ev ¼ ðSvÞE ¼ ðSvÞN ;j ¼ 0; j ¼ 0; . . . ;M :
The boundary condition eLTv ¼ 0 (including all boundary points) imply that two boundary conditions are pre-
scribed at each of the four corners, see Fig. 1.

Remark. A well-defined projection operator P requires a boundary operator L that (i) covers all boundary
points, and (ii) have full rank, i.e., no linear dependence.

The total number of prescribed boundary conditions in (35) are 2(N + 1) + 2(M + 1). Thus, the projection
operator is well defined iff rankðeLÞ ¼ 2ðN þM þ 2Þ. However, in [24] it is shown that L constructed in this
way is linearly dependent, and that the corner points requires special treatment.

In the following lemma we make use of the point-wise boundary operators ((LS)i, (LW)j, (LN)i and (LE)j)
defined through
ðLT
S vÞi ¼ ðSvÞi;0; ðLT

WvÞi ¼ ðSvÞ0;j; ðLT
NvÞi ¼ ðSvÞi;M ; ðLT

EvÞj ¼ ðSvÞN ;j

for i = 0, . . . ,N, j = 0, . . . ,M, where
ðLT
S Þi ¼

1

hy
0 . . . 0

XM

k¼0

skeT
k 0 . . . 0

" #
;

ðLT
WÞj ¼

1

hx
½s0eT

j . . . ; sN eT
j 0 . . . 0�;

ðLT
NÞi ¼

1

hy
0 . . . 0� 1

hy

XM

k¼0

sM�keT
k 0 . . . 0

" #
;
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ðLT
EÞj ¼

1

hx
½0 . . . 0sN eT

j . . . ; s0eT
j � ð36Þ
and {ej} is a canonical basis in RN+1. For example,
ðLT
S Þ0 ¼

1

hy
½s0s1 . . . sM 0 . . . 0� 2 R1�ðMþ1ÞðNþ1Þ;

ðLT
WÞ0 ¼

1

hx
½s00 . . . 0s10 . . . 0 . . . sN 0 . . . 0� 2 R1�ðMþ1ÞðNþ1Þ
are the boundary operators in the y- and x-direction, respectively, at grid-point (0,0), i.e., at SW in Fig. 1.

Remark. Note that sk = 0, for k > r + 1, where r + 1 is the number of grid points defining the boundary
derivative S. For the sixth order approximation r = 4, see Appendix II.

To have a well-defined projection (11), it is necessary to reduce the number of boundary conditions to one
at each corner. We follow the procedure in [24] and construct a new boundary operator by forming linear
combinations (see Fig. 1)
LT
SW ¼ ð1� gSWÞðLT

S Þ0 þ gSWðLT
WÞ0; LT

NW ¼ ð1� gNWÞðLT
NÞ0 þ gNWðLT

WÞN ;
LT

NE ¼ ð1� gNEÞðLT
NÞN þ gNEðLT

EÞN ; LT
SE ¼ ð1� gSEÞðLT

S ÞN þ gSEðLT
EÞ0;
where 0 6 gSW,gNW,gNE,gSE 6 1. The final boundary operator is given by
L ¼ ½ LS LW LN LE LSW LNW LNE LSE � 2 RðNþ1Þ�ðMþ1Þ�2ðNþMÞ: ð37Þ
The modified side operators are given by
LT
S ¼ IIM � LT

l ; LT
W ¼ LT

l � IIN ; LT
N ¼ IIM � LT

r ; LT
E ¼ LT

r � IIN ;
thus excluding the corner points, see (1). The total number of boundary conditions are now reduced to
2(N + M), and equals the total number of boundary points. The following lemma shows how to
obtain a well-defined boundary operator for a two-dimensional problem with Neumann boundary
conditions.

Lemma 4.1. The columns of L in (37) are linearly independent and Rank(L) = 2(N + M), leading to a well-

defined projection, iff gNW; gSE 6¼ hx
hxþhy

.

The proof is given in Appendix I.
We are now ready to tie everything together in the following proposition.

Proposition 4.2. The semi-discrete approximation (34) is strictly stable if D2 is a symmetric SBP operator (see

Definition 3.2), the boundary operator is given by (37) and gNW; gSE 6¼ hx
hxþhy

.

Proof. The energy method applied to (34) yields
d

dt
ðkvtk2

H þ vTðH ðxÞ � AðyÞÞvþ vTðAðxÞ � H ðyÞÞvÞ ¼ ðPvtÞTðNÞH ðxÞðSvÞðNÞ � ðPvtÞTðSÞH ðxÞðSvÞðSÞ
þ ðPvtÞTðEÞH ðyÞðSvÞðEÞ � ðPvtÞTðW ÞH ðyÞðSvÞðW Þ ¼ 0;
where v(N,S,E,W) symbolizes the boundary vectors at the north, south, east and west boundaries,
respectively, see Fig. 1. In the first step we use the fourth property in (12) and the symmetric SBP property
(see Definition 3.2). In the last step we utilize the fact that we apply (through the projection) homogenous
Neumann BC, together with the third property in (12), i.e., ðPvtÞTðN;SÞH ðxÞðSvÞðN;SÞ ¼ 0 and ðPvtÞTðW;EÞ
H ðyÞðSvÞðW;EÞ ¼ 0.

Hence, if D2 is a symmetric SBP operator and if the boundary operator (37) is well defined, i.e., if
gNW; gSE 6¼ hx

hxþhy
as shown in Lemma 4.1, we obtain an energy estimate completely analogous to (33). This

means that (34) is a strictly stable approximation to (32). h
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4.2. Media interface

Consider the wave equation
a�1
1 utt ¼ b1ðuxx þ uyyÞ; x 2 ½�1; 0�; y 2 ½0; 1�;

a�1
2 vtt ¼ b2ðvxx þ vyyÞ; x 2 ½0;þ1�; y 2 ½0; 1�

ð38Þ
on two different media b1 6¼ b2 and a1 6¼ a2 (see Fig. 2) with the interface conditions given by (15) and
Neumann boundary conditions. The energy method leads to
d

dt
ða�1

1 kutk2 þ a�1
2 kvtk2 þ b1ðkuxk2 þ kuyk2Þ þ b2ðkvxk2 þ kvyk2ÞÞ ¼ 0: ð39Þ
The semi-discrete approximation (again utilizing the transformation (26)) using the projection method, can
formally be written
wtt ¼ P ðDx þ DyÞw; ð40Þ

where w ¼ ½~u;~v�T, Dx ¼ diagðc2

1DðlÞ2 � IM ; c2
2DðrÞ2 � IMÞ and Dy ¼ diagðINl � c2

1DðlÞ2 ; INr � c2
2DðrÞ2 Þ. To simplify

notation in this section we skip the tilde signs over w and P.
The projection operator is given by (11), where H ¼ diagðH ðlÞx � IM ;H ðrÞx � IMÞ � diagðINl � H ðlÞy ; INr � H ðrÞy Þ

and the boundary operator
L ¼ ½ LLS LSW LLW LNW LLN LRN LNE LRE LSE LRS LI �:
The side operators are defined as:
LT
LS ¼ ½ILNl � LT

l LT
0 �; LT

LW ¼ ½LT
l � IIM LT

0 �; LT
LN ¼ ½ILNl � LT

r LT
0 �;

LT
RN ¼ ½LT

0 IRNr � LT
r �; LT

RE ¼ ½LT
0 LT

r � IIM �; LT
RS ¼ ½LT

0 IRNr � LT
l �
complemented with the corner treatment (see Lemma 4.1):
LT
SW ¼ ð1� gSWÞ½IlNl � LT

l LT
0 � þ gSW½LT

l � IlM LT
0 �;

LT
NW ¼ ð1� gNWÞ½IlNl � LT

r LT
0 � þ gNW½LT

l � IrM LT
0 �;

LT
SE ¼ ð1� gSEÞ½LT

0 IrNr � LT
l � þ gSE½LT

0 LT
r � IlM �;

LT
NE ¼ ð1� gNEÞ½LT

0 IrNr � LT
r � þ gNE½LT

0 LT
r � IrM �:
Here we have utilized the Kronecker product and the one-dimensional boundary operators (20). LT
0 is a zero

vector of appropriate dimension and the interface operator is given by
LT
I ¼ ½LT

Il � LT
Ir� � IIM ; ð41Þ
where LT
Il and LT

Ir are given by (30).

Remark. To obtain a well-defined boundary operator L we must not specify to many boundary conditions at
the four corners, as described in the previous section. We must also avoid to over specify at the locations (here
two) where the interface meets the outer boundaries. There are several ways to accomplish this. Here we
simply specify the outer boundary conditions at the two locations. Another well defined choice is to specify a
linear combination between the interface and the boundary conditions.

The energy method applied to (40) leads to
d

dt
ðk~utkH ðlÞ þ k~vtkH ðrÞ þ c2

1ð~uTðH ðlÞx �AðlÞy Þ~uþ ~uTðAðlÞx �H ðlÞy Þ~uÞ þ c2
2ð~vTðH ðrÞx �AðrÞy Þ~vþ ~vTðAðrÞx �H ðrÞy Þ~vÞÞ ¼ 0;
where we make use of the fourth property in (12) and the symmetric SBP property (see Definition 3.2). We also
utilize the fact that we apply (through the projection) homogenous Neumann BC and the interface conditions
(27), together with the third property in (12), i.e., that the boundary and interface terms cancel or become zero.
By utilizing (26) to go back to the original set of variables, we obtain
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Fig. 3. The eigenvalues to eM 2;6 for the 2nd and 6th order discretizations (40), respectively, with a1 = b1 = 1, a2 = b2 = 0.6. N = 2 · 142.
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d

dt
a�1

1 kutkHl
þ a�1

2 kvtkHr
þ b1ðuTðH ðxÞl �AðyÞl Þuþ uTðAðxÞl �H ðyÞl ÞuÞ þ b2ðvTðH ðxÞr �AðyÞr Þvþ vTðAðxÞr �H ðyÞr ÞvÞ

� �
¼ 0;

ð42Þ

which is completely analogous to (39). This means that (40) is a strictly stable approximation.

Consider the ODE system wtt = Mw, with the general solution
w ¼
XN

k¼0

aj exp
ffiffiffiffiffi
bj

q
t;
where bj are the eigenvalues to the matrix M and aj the corresponding eigenvectors. If any of the eigenvalues
have an imaginary and/or a positive real part we obtain exponential time-growth. The energy estimate (42)
shows that the energy (and thus the solution) is bounded and that the eigenvalues to the operator P(Dx + Dy)
in (40) must be non-positive and real. This can be verified numerically by computing the eigenvalues to
h2P ðDx þ DyÞ ¼ eM . The result for the 2nd and 6th order discretizations of (40) with a1 = b1 = 1 and
a2 = b2 = 0.6 are shown in Fig. 3.

5. Time integration

By combining symmetric second derivative SBP operators and the projection method, to implement the
boundary and interface conditions (see for example (13), (29), (34) and (40)) we obtain an ODE system (with
N unknowns):
wtt ¼ Mwþ GðtÞ;
wð0Þ ¼ f1; wtð0Þ ¼ f2

ð43Þ
for the discrete solution vector w. Note that this form cannot be obtained by using the original formulation
(18), since that requires (23) to hold. In Sections 3 and 4 we have shown that the matrix M have non-positive
and real eigenvalues (a necessary stability condition) by utilizing the energy method.

To construct a compact and explicit high order accurate time marching method we start by introducing
wðnÞtt ¼ ðDþD�ÞtwðnÞ �
k2

12
wðnÞtttt �

k4

360
wðnÞtttttt þ Oðk6Þ;
where (D+D�)t is the central second order scheme in time, k the time step, and tn = nk, n = 0,1, . . . By using
(43) and Taylor expansions we can obtain a second order explicit time discretization:
wð0Þ ¼ f1; wð1Þ ¼ f1 þ kf 2 þ ~f 2;

wðnþ1Þ � 2wðnÞ þ wðn�1Þ ¼ k2MwðnÞ þ eGðnÞ2 ; n ¼ 1; . . .
where ~f 2 ¼ ðk2=2ÞG, at t = 0, and eGðnÞ2 ¼ k2G, at t = tn.
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A 6th order explicit time discretization is given by:
wð0Þ ¼ f1; wð1Þ ¼ IN þ
k2

2
M þ k4

24
M2

� �
f1 þ k IN þ

k2

6
M þ k4

120
M2

� �
f2 þ ~f 6;

wðnþ1Þ � 2wðnÞ þ wðn�1Þ ¼ k2M IN þ
k2

12
M þ k4

360
M2

� �
wðnÞ þ eGðnÞ6 ; n ¼ 1; . . .
where
~f 6 ¼
k2

2
Gþ k3

6
Gt þ

k4

24
ðMGþ GttÞ þ

k5

120
ðMGt þ GtttÞ þ

k6

720
ðM2GþMGtt þ GttttÞ; t ¼ 0
and
eGðnÞ6 ¼ k2Gþ k4

12
ðMGþ GttÞ þ

k6

360
ðM2GþMGtt þ GttttÞ; t ¼ tn:
The time marching method can formally be written
wðnþ1Þ

wðnÞ

" #
¼

Cp �IN

IN 0N

	 

wðnÞ

wðn�1Þ

" #
þ

eGðnÞp

0N

" #
; n ¼ 1; . . .
where 0N is a zero N · N-matrix and
C2 ¼ a2 eM þ 2IN ; C6 ¼ a2 eM IN þ
a2

12
eM þ a4

360
eM 2

� �
þ 2IN ð44Þ
for the 2nd and 6th order time discretizations, respectively. The CFL number is defined as
a ¼ k
hd
; hd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðh2

x þ h2
yÞ=2

q

and eM ¼ h2

dM is the undivided operator. The stability requirement for the overall discretization is given by
q(C2,6) 6 2, where the symbol q denotes the spectral radius. By utilizing (44) we obtain the following CFL
conditions
a 6
2ffiffiffiffiffiffiffiffiffiffiffiffi

qð eM Þq ; a 6
1:76ffiffiffiffiffiffiffiffiffiffiffiffi
qð eM Þq ;
for the 2nd and 6th order time discretizations, respectively. By performing numerical simulations we found
that the above estimates are sharp. Note that qð eM Þ is independent of N, but problem dependent.

For the one-dimensional problem (29) (with a1 = b1 = 1 and a2 = b2 = 0.6) we obtain qð eM 2Þ ¼ 4:00 and
qð eM 6Þ ¼ 10:76 for the 2nd and 6th order spatial operators, respectively. For the two-dimensional problem
(40) we obtain qð eM 2Þ ¼ 7:83 and qð eM 6Þ ¼ 17:69, see Fig. 3.
6. Computations

6.1. Efficiency

To test the convergence rate for the discretizations of (14), (38), and Neumann boundary conditions, we
choose an analytic solution
u ¼ cosðw1c1tÞ cosðw1xÞ; x 2 ½�1; 0�; t P 0; w1 ¼ ð2nþ 1Þp; m; n 2 Z;

v ¼ cosðw2c2tÞ cosðw2xÞ; x 2 ½0; 1�; t P 0; w2 ¼ ð2mþ 1Þp; c2 ¼ c1
w1

w2

:



K. Mattsson, J. Nordström / Journal of Computational Physics 220 (2006) 249–269 263
The convergence rate is calculated as
Table
log(l2-e

N

2 · 262

2 · 512

2 · 101
2 · 201

Table
Efficien

Time

t = 1
t = 10
t = 30

N1 in e
q ¼ log10

kw� wðh1Þkh

kw� wðh2Þkh

� ��
log10

h1

h2

� �
;

where w is the analytic solution and wðh1Þ the corresponding numerical solution with grid size h1.
kw� wðh1Þkh is the l2-error. A convergence study is shown in Table 1, comparing the 2nd and the 6th order
discretizations (both time and space) with a1 = b1 = 1, a2 = b2 = 0.6, n = 1 and m = 2. The 6th order discret-
ization have a 3rd order accurate boundary closure. This leads to 5th order global accuracy, since we gain
two orders of accuracy (see [28,20]) for second derivatives. The CFL conditions for the 2nd and 6th order
discretizations are given by 0.71 and 0.47, respectively. By analyzing the discretization error we found that
the spatial discretization error dominate for moderate grid resolutions (N 6 2 · 2002) and time integrations
(t < 1000). The conclusion is that the second order time discretization is sufficient for the applications con-
sidered in this paper.

To evaluate the efficiency of the higher order discretization we compared the number of unknowns N2,6 for
the 2nd and 6th order case, respectively, to obtain a solution with an l2-error less than 0.001 after t = 1, t = 10
and t = 30. The efficiency for a d-dimensional problem is defined as the fraction between the total number of

operations for the second as compared to the 6th order discretization, i.e., Ed ¼
3Nd

2
a6

7Nd
6
a2

. Here we take into

account the slightly different CFL conditions for the 2nd and 6th order spatial discretizations, denoted by
a2 and a6, respectively. Hence, a value Ed over one is in favor of the higher order discretization. The results
are shown in Table 2. We clearly see an increase in Ed for high dimensions and long time integrations. For
even lower values of the error tolerance, the gain would be even higher.

6.2. Application

As an illustration we consider the two-dimensional wave equation (with c1 = 1, c2 = 0.5 and Neumann
boundary conditions) on the 9-block domain shown in Fig. 4. To test the accuracy of the interface treat-
ment we performed a convergence study, shown in Table 3, comparing the 2nd and the 6th order discret-
izations. The solutions on the two coarsest grids are poorly resolved for both discretizations, which explains
the low convergence rate for the sixth order case in the second row. According to theory we should obtain
5th order convergence for the 6th order case (as mentioned above). To obtain a confident measure on the
rate of convergence requires (i) a fairly grid-converged reference solution, and (ii) solutions far from grid-
convergence. The solution using the 6th order discretization on the (3 · 97)2 grid (used in Table 3) does not
meet the second requirement, which could explain the slightly lower (than five) rate of convergence. As ini-
tial data we specify a Gaussian pulse, centered at (x,y) = (�1.5,�1.5) (see Fig. 4), away from any bound-
aries or interfaces. The solution is then advanced and recorded at t = 1 (see Fig. 5), when the pulse have
1
rror) and convergence, comparing the 6th to the 2nd order discretization, with a1 = b1 = 1, a2 = b2 = 0.6

lð6thÞ
2 q(6th) lð2ndÞ

2 q(2nd)

�0.72 �0.33
�2.15 4.89 �1.21 3.01

2 �3.64 5.02 �2.09 2.96
2 �5.14 5.03 �2.94 2.84

2
cy measurement, comparing the 6th to the 2nd order discretization

N ð6thÞ
1 N ð2ndÞ

1 E1 E2 E3

43 111 0.66 1.71 4.42
64 290 1.17 5.28 23.9
95 570 1.54 9.26 55.5

ach dimension. a1 = b1 = 1, a2 = b2 = 0.6.
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Fig. 4. Computational domain and initial solution, a Gaussian pulse.

Table 3
log(l2-error) and convergence, comparing the 6th to the 2nd order discretization, with b1 = c1 = 1, b2 = c2 = 0.5

N lð6thÞ
2 q(6th) lð2ndÞ

2 q(2nd)

(3 · 13)2 �1.69 – �1.80 –
(3 · 25)2 �3.09 2.85 �2.52 1.51
(3 · 49)2 �4.46 4.71 �3.20 2.40
(3 · 97)2 �5.17 4.56 �3.83 2.25

Fig. 5. Solution at t = 1 and t = 3. 6th order discretization and N = (3 · 97)2 unknowns.
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reached the lower left corner of the interface. At t = 1 the pulse have not yet influenced the outer bound-
aries. As a reference solution we use the 6th order accurate solution computed on a grid with (3 · 385)2

unknowns.
The solutions at t = 1 and t = 3 using N = (3 · 97)2 unknowns and the 6th order discretization are shown in

Fig. 5. In Fig. 6 the solution at t = 10 is shown from two different perspectives. In Fig. 7 the errors at t = 10
are plotted, comparing the 2nd and 6th order discretizations. We use the 6th order solution on the (3 · 385)2

grid as a reference solution. The discrete l2 error for the 2nd and 6th order discretizations are 0.0123 and
0.00138, respectively.



Fig. 6. Solution at t = 10. 6th order discretization. Two different views.

Fig. 7. The error at t = 10, comparing the 6th and 2nd order discretization.
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As a last illustration we consider another problem on the 9-block domain. This time we initiate with planar
waves going in the x-direction, see Fig. 8, where the solution at t = 10 is also shown. The solutions at t = 1 and
t = 3 are shown in Fig. 9. The slowdown of the wave speed in the center block is clearly seen.
Fig. 8. Initial data, planar waves and the solution at t = 10. 6th order discretization. N = (3 · 97)2 unknowns.



Fig. 9. Solution (initiated with planar waves) at t = 1 and t = 3. 6th order discretization and N = (3 · 97)2 unknowns. (a) Re = 330;
(b) Re =1.
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7. Conclusions and future work

Strictly stable and high order accurate finite difference schemes for the wave equation on second order form
and discontinuous media are derived. A certain class of the recently developed compact second derivative SBP
operators have been combined with the projection method for implementing boundary and interface condi-
tions. We have shown that the projection method requires special treatment at corners and block interfaces
in two dimensions to be well defined. The efficiency and high order accuracy of this method is verified by
numerical simulations in one and two dimensions.

The methodology is so far restricted to rectangular geometries and piecewise constant coefficients. The
extension to complex geometries and variable wave speeds can be done by using a hybrid technique like
the one proposed in [9,10], where an unstructured finite volume method is combined (using the SAT method)
with a high order finite difference method. This will be pursued in a coming paper.

Appendix I

Proof of Lemma 4.1. To investigate linear dependence we study
XN�1

j¼1

ajðLSÞj þ
XN�1

j¼1

bjðLWÞj þ
XN�1

j¼1

rjðLNÞj þ
XN�1

j¼1

cjðLEÞj þ aLSW þ bLNW þ rLNE þ cLSE ¼ 0;
where we let M = N. This is equivalent to the following two systems of equations
s0

hx

XN�1

k¼1

bkek �
s0

hx

XN�1

k¼1

ckek þ a
1� gSW

hy

XN

k¼0

skek þ
gSW

hx
s0e0

 !
þ b � 1� gNW

hy

XN

k¼0

sN�kek þ
gNW

hx
s0eN

 !

þ c � 1� gNE

hy

XN

k¼0

sN�kek �
gNE

hx
s0eN

 !
þ r

1� gSE

hy

XN

k¼0

skek �
gSE

hx
s0e0

 !
¼ 0 ð45Þ
and
sj

hx

XN�1

k¼1

bkek �
sN�j

hx

XN�1

k¼1

ckek þ
aj

hy

XN

k¼0

skek �
rj

hy

XN

k¼0

sN�kek þ agSW

sj

hx
e0

þ bgNW

sj

hx
eN � cgNE

sN�j

hx
eN � rgSE

sN�j

hx
e0 ¼ 0; j ¼ 1; . . . N � 1: ð46Þ
The first component (that corresponds to s0e0) in (45) leads to
aðhxð1� gSWÞ þ hygSWÞs0 þ rðhxð1� gSEÞ � hygSEÞs0 ¼ 0
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and there are only two non-trivial solutions
ðiÞ gSE ¼
hx

hx þ hy
; ðiiÞ a ¼ r

hxð1� gSEÞ � hygSE

hxð1� gSWÞ þ hygSW

;

since 0 6 gSW, gSE, 6 1 and s0 6¼ 0 for any SBP operator. The second solution violates (46) and must be dis-
carded. Hence, gSE 6¼ hx

hxþhy
implies a = r = 0. The last component (that corresponds to s0eN) in (45) leads to
bð�hxð1� gNWÞ þ hygNWÞs0 � cðhxð1� gNEÞ þ hygNEÞs0 ¼ 0
and again there are only two non-trivial solutions
ðiÞ gNW ¼
hx

hx þ hy
; ðiiÞ c ¼ �b

hxð1� gNWÞ þ hygNW

hxð1� gNEÞ þ hygNE

;

and again only the first solution is valid. If gNW 6¼ hx
hxþhy

necessarily b = c = 0. From the remaining components
in (45) we then obtain bj, cj = 0, j = 1, . . . ,N � 1. This in turn, by utilizing (46), implies that aj,
rj = 0, j = 1, . . . ,N � 1. The columns of L are thus linearly independent iff gNWgSE 6¼ hx

hxþhy
, i.e., L has full

rank. h
Appendix II. Symmetric second derivative SBP operators

We now present the specific form of the symmetric SBP operators used in the analysis. We consider the 2nd
and 6th order accurate discretizations.

Appendix II.1. Second order symmetric SBP operator

The discrete norm is given by H ¼ hdiag 1
2
; 1; . . . ; 1; 1

2

� �
. The discrete second order accurate symmetric SBP

operator D2 = H�1(�A + BS) approximating d2

dx2 and the boundary derivative operator S are given by,
D2 ¼
1

h2

1 �2 1

1 �2 1

. .
. . .

. . .
.

1 �2 1

1 �2 1

26666664

37777775; S ¼ 1

h

� 3
2

2 � 1
2

1

. .
.

1
1
2
�2 3

2

266666664

377777775
:

Appendix II.2. Sixth order symmetric SBP operator

The discrete norm is given by H ¼ h diag 13649
43200

; 12013
8640

; 2711
4320

; 5359
4320

; 7877
8640

; 43801
43200

; 1; . . .
� �

and the discrete sixth order

accurate symmetric SBP operator D2 = H�1(�A + BS) approximating d2

dx2. The interior stencil is the standard
sixth order accurate central scheme h2ðD2vÞj ¼ 1

90
vj�3 � 3

20
vj�2 þ 3

2
vj�1 � 49

18
vj þ 3

2
vjþ1 � 3

120
vjþ2 þ 1

90
vjþ3. At the

boundary the operator becomes:
D2 ¼ 1

h2

114170
40947

� 438107
54596

336409
40947

� 276997
81894

3747
13649

21035
163788

0 0 0 0
6173
5860

� 2066
879

3283
1758

� 303
293

2111
3516

� 601
4395

0 0 0 0

� 52391
81330

134603
32532

� 21982
2711

112915
16266

� 46969
16266

30409
54220

0 0 0 0
68603

321540
� 12423

10718
112915
32154

� 75934
16077

53369
21436

� 54899
160770

48
5359

0 0 0

� 7053
39385

86551
94524

� 46969
23631

53369
15754

� 87904
23631

820271
472620

� 1296
7877

96
7877

0 0
21035

525612
� 24641

131403
30409
87602

� 54899
131403

820271
525612

� 117600
43801

64800
43801

� 6480
43801

480
43801

0

0 0 0 1
90

� 3
20

3=2 � 49
18

3=2 � 3
20

1
90

. .
. . .

. . .
. . .

.

26666666666666664

37777777777777775
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and the boundary derivative operator S of 4th order accuracy:
S ¼ 1

h

� 25
12

4 �3 4
3
� 1

4

1

. .
.

1
1
4
� 4

3
3 �4 25

12

266666664

377777775
:
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